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1.1 Introduction

Artificial Life as a field of study was inaugurated by Chris Langton, who
described it as the study of man-made systems exhibiting behaviours char-
acteristic of life. As such it is complementary to traditional biology, locating
life-as-we-know-it within the larger picture of life-as-it-could-be[20].

The core of artificial life research involves putting together simple compu-
tational objects, or agents that interact to produce “lifelike” behaviour. The
key term is emergence' of nontrivial, possibly even unexpected, behaviour
from the interactions of the agents.

The term “agent” is often used to refer to pieces of software exhibiting
autonomy, reactivity, goal orientation and persistence[11] running on a com-
puter or migrating between hosts of a computer network. Agent based mod-
elling is not about these sorts of agents, per se. In an agent based model, the
thread of execution is passed back to the simulation environment after each
agent’s method is completed, which is analogous to the way execution control
is passed between independent tasks in a multitasking operating system. Nor
do they often have goal orientation. What distinguishes agent based mod-
elling from other sorts of modelling is a focus on building models “bottom
up”, constructing model systems from a large number of small interacting
software components, that in themselves model a component of the modelled
system. Thus in a model of schooling fish, each fish is individually modelled,
as opposed to aggregate concepts like “school of fish”.

In artificial life the focus is on the systems themselves, without reference
to external systems except perhaps by analogy. The agents are often called

! The concept of emergence is a difficult one for philosophers to pin down. I can
recommend [15, 3, 12] for discussions of the topic, and [34] for my own take
on it. However, for the purposes of this chapter, we can rely on our intuitive
understanding of novel behaviour emerging from the interactions between parts
of a system.
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digital organisms[32] to stress this fact. In agent based modeling (ABM), the
same methodology of constructing artificial analogues from the bottom up is
applied to modeling real world systems — forest fires, stock markets, traffic
to name but a few. The agents in the model will correspond in some way to
physical objects in the system being modelled.

In biology, individual based modelling[17] (IBM) has become increasingly
important, as inadequacies of traditional population based modeling have be-
come apparent. Individual based models track individual animals or plants
rather than population aggregated quantities. Individual based models may
be constructed in an agent-based way, with computational objects represent-
ing each individual organism, or alternatively each individual is represented
by a collection of numbers, and the population of individuals is therefore a
collection of vectors. For the sake of clarity, let us call this type of model a
vector-based IBM. Conceptually, a vector-based IBM is little different from a
specialised agent based model, where each agent consisting of a collection of
numbers, however in practice data is laid out differently in the computer’s
memory, which leads to substantially different performance characteristics.

In physics, the main form of individual based modelling is molecular dy-
namics (MD) simulations. Here, each molecule of the physical system of inter-
est is represented by a collection of numerical properties: position, momentum,
mass, charge etc., and the corresponding position and momentum vectors are
updated according to the laws of classical dynamics. Whilst MD simulations
could be implemented in an agent-based fashion, it is rarely done due to the
performance degradation experienced in doing so.

Many artificial life systems have been created over the years, of prominent
note are Tierra, Avida, Echo, Framsticks to name but a few of the most well
known. Each of these systems is implemented from ground up in a general
purpose programming language like C or C++. A typical simulation needs to
implement not only the agents, but also an environment, an event generator, a
means to specify input parameters, as well as visualisation and analysis tools.
In an attempt to introduce some commonality and code reuse between these
disparate artificial life models, Langton initiated the Swarm project, which
produced an agent-based modeling platform into which scientists could insert
their agents into an environment adapted from a library of containers (aka
“Swarms” ), and use event generators and visualisation probes to analyse the
progress of the simulation.

Over the years, a number of similar agent-based modeling platforms have
been created, each with a differing rationale for existence. Each platform spec-
ifies a particular implementation language for the agents and has a different
balance between performance, scalability, generality and usability.

This chapter surveys open source (Sect. 1.3.1), agent based modeling plat-
forms. Being open source is important, for ensuring replicability of results be-
tween different research groups, and also for auditing against implementation
artifacts. This chapter does not examine commercial agent based modelling
options.
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1.2 Applications

Agent based models have been used in a wide variety of application areas,
so this section will necessarily be illustrative. ABMs are commonly used in
social science settings, to test theories for why particular customs have arisen.
Any recent issue of the Journal of Artificial Societies and Social Simulation
will provide any number of agent based models. Economics too use agent
based models to model the behaviour of markets. Here, though, agent based
models compete with more traditional Monte Carlo techniques that model
each economic agent as a simple set of state variables.

Another important area of application is traffic modeling, with vehicles
in a road network being represented by software agents with intended desti-
nations, and differing levels of behaviour (eg conservative, experimental and
so on). Here the concern is quite pragmatic — what happens if a new road is
created here, or another road blocked? Similar considerations have motivated
research into modelling crowd behaviour within restricted environments such
as a sporting venue.

Grimm|[14] presents a decade health check of individual based modelling in
ecology. Huston et al. argued that individual based models had the potential
to “unify ecological theory”[17], yet Grimm found that a decade on from
Huston’s paper, this potential had not been realised. Individual models have
their place in answering particular questions inaccessible to more traditional
simulation techniques, but linking the results back to theoretical concerns has
not proved easy.

Finally, to artificial life, the field that inspired Swarm and later agent
based modelling platforms. Agent based modelling is an important tool for
the generation of complex life-like behaviours, others being cellular automata
and boolean networks[38]. However, curiously, general purpose agent based
modelling environments such as Swarm and Repast have rarely been used in
the artificial life literature, with researchers developing, or making use of more
special purpose simulation software such as Avida[l].

The following specific models are well known classic models that illustrate
the sorts of modelling ABM’s are applied to. They are exemplars only, agent
based modelling as a field has grown far beyond the bounds of a single chapter
like this one.

1.2.1 Sugarscape

Sugarscape[9] is a classic agent based model of a society of agents living on a
2D grid. Each agent has properties of metabolism and vision, inherited from
their parents. Agents have separate requirements for “sugar” and “spice”.
They need both goods to survive and exhaustion of either will lead to death by
starvation. The agents therefore need to search for these goods and accumulate
them in order to survive. They do so by following a simple set of connected
instructions referred to as a ruleset. For example, the ruleset for gathering is:
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1. Evaluate personal stocks and determine which good is needed more ur-
gently (preferred good).

2. Look around as far as vision permits and identify the site with the greatest

value of the preferred good.

If the greatest value exists at multiple locations, select one randomly.

Move to that site and harvest all resources from that site.

5. If no value is found within the visible grid, then the citizen randomly
relocates to one of the farthest cells within its vision range.
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Fig. 1.1. Sugarscape model implemented in Repast

Agent replacement is either handled randomly upon the death of any agent,
or agents will mate according to the mating ruleset, giving rise to offspring
agents. The offspring agents inherit part of their parents’ stores of sugar and
spice.

Agents need both sugar and spice to survive. They have independent
metabolism rates for each resource. There may arise situations where agents
starve to death due to a paucity of one resource, despite having a plentiful
supply of the other. Sugarscape allows agents to trade resources. The person-
ality of the agent is an important attribute affecting their approach to trade.
Personality is randomly assigned at birth and determines the trading strat-
egy pursued by the citizen. A bear (cautious) personality seeks to minimize
surplus and will only trade the surplus commodity. A bull (aggressive) person-
ality seeks to maximize trades even if it involves trading the scarce commodity.
The bull only trades the minimum quantity required to receive one unit of the
other commodity. By maximizing trades, the bull seeks to hedge its exposure
to unfair trades. For instance the bear seeks trading partners that possess a
surplus of its scarce commodity. It then attempts to trade a certain proportion
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of its surplus such that the quantity received in exchange can be combined
with the balance of its surplus to mitigate the risk of depletion of any one
commodity. The bear strategy is at risk of wild fluctuations in the exchange
price depending on the variance in the marginal rate of substitution values
(perceived value of spice relative to that of sugar) of the trading partners.
Since they attempt to sell all available surplus immediately, bears could end
up trading all their surplus in a single unfavorable trade. The bull strategy,
by trading unit amounts with as many traders as possible, seeks to average
out price fluctuations and arrive closer to the equilibrium price.

Sugarscape has been implemented in Swarm, Repast, Mason, Cormas and
NetLogo, with the Mason version being perhaps the most complete.?

1.2.2 Santa Fe Artificial Stock Market
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Fig. 1.2. A screenshot of the Artificial Stock Market

The “Santa Fe” artificial stock market was developed by Brian Arthur,
John Holland, Blake LeBaron, Richard Palmer, and Paul Taylor [28, 2]. The
market consists of a population of heterogeneous agents that buy, sell, and

2 Sean Luke, private correspondence.
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hold stocks and bonds. An agent’s buy, sell, and hold decisions are made on
the basis of that agent’s beliefs about whether the stock’s dividend is likely to
go up or down, and those beliefs are determined by a set of market forecasting
rules that are continually being assessed as to accuracy. Over time an agent’s
set of market forecasting rules evolve under the action of a genetic algorithm.

The market contains a fixed number N of agents that are each initially
endowed with a certain sum of money. At each timestep each agent must
decide whether to invest her money in a risky stock or in a risk-free asset
analogous to a real world Treasury Bill. The risk-free asset is in infinite supply
and pays a constant interest rate r. The risky stock, issued in N shares, pays
a stochastic dividend that varies over time. The stock’s dividend stream is an
exogenous stochastic process whose present value is unknown to the agents.

Agents apply their market forecasting rules to their knowledge of the
stock’s price and dividend history to perform a risk aversion calculation and
decide how to invest their money at each time period. The price of the stock
rises if the demand for it exceeds the supply, and falls if the supply exceeds
the demand. Each agent in the market can submit either a bid to buy shares,
or an offer to sell shares — both at the current price p; — or neither. Bids
and offers need not be integers; the stock is perfectly divisible. The aggregate
demand for the stock cannot exceed the number of shares in the market. The
agents submit their decisions and offers to the market specialist — an extra
agent in the market who controls the price so that his inventory stays within
certain bounds. The specialist announces an initial trial price, collects bids
and offers from agents at that price, from these data announces a new trial
price, and repeats this process until demand and supply are equated. The
market clearing price serves as the next period’s market price.

The agents make their investment decisions by using a set of hypotheses
or rules about how to forecast the market’s behavior. At each time period,
each agent considers a fixed number of forecasting rules. The rules determine
the values of the variables a and b which are used to make a linear forecast of
next period’s price:

E(pi41 +det1) = alpe+d) +b (1.1)

where p; is the trial price, d; the dividend and a and b are the forecasting
parameters. The forecasting rules have the following form:

if (the market meets condition D;) then (a =kj, b= k) (1.2)

where D, is a description of the state of the market and k; and k; are constants.

Market descriptors (D;) match certain states of the market by an analysis
of the price and dividend history. The descriptors have the form of a boolean
function of some number of market conditions. The set of market conditions
in each rule is represented as an array of bits in which 1 signals the presence
of a certain condition, 0 indicates its absence, and # indicates “don’t care”.
The breadth and generality of the market states that a rule will recognize is
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proportional to the number of # symbols in its market descriptor; rules with
descriptors with more Os and 1s recognize more narrow and specific market
states. As these strings are modified by the genetic algorithm, the number
of Os and 1s might go up, allowing them to respond to more specific market
conditions. An appropriate reflection of the complexity of the population of
forecasting rules possessed by all the agents is the number of specific market
states that the rules can distinguish, and this is measured by the number of
bits that are set in the rules’ market descriptors.

An example may help clarify the structure of market forecasting rules.
Suppose that there is a twelve bit market descriptor, the first bit of which
corresponds to the market condition in which the price has gone up over
the last fifty periods, and the second bit of which corresponds to the market
condition in which the price was 75% higher than its fundamental value. Then
the descriptor 10########### matches any market state in which the stock
price has gone up for the past fifty periods and the stock price is not 75%
higher than its fundamental value. The full decision rule

if 10########## then (o =0.96, b=0) (1.3)

can be interpreted as “If the stock’s price has risen for the past fifty periods
and is now not 75% higher than its fundamental value, then the (price +
dividend) forecast for the next period is 96% of the current period’s price.”

If the market state in a given period matches the descriptor of a forecasting
rule, the rule is said to be activated. A number of an agent’s forecasting rules
may be activated at a given time, thus giving the agent many possible forecasts
to choose from. The agent decides which of the active forecasts to use by
measuring each rule’s accuracy and then choosing at random from among the
active forecasts with a probability proportional to accuracy. Once the agent
has chosen a specific rule to use, the rule’s a and b values determine the agent’s
investment decision.

The Artificial Stock Market website is implemented in Swarm (both Java
and Objective C versions), and available from http://artstkmkt.sourceforge.net.

1.2.3 Heatbugs

Heatbugs was originally written a “demonstrator” model for Swarm, illustrat-
ing the main techniques for setting up agents in a 2D grid, and having the
agents interact with the environment. Because it is a fairly simple, yet non-
trivial model, and well documented, it has been ported to a number of other
agent-based modelling environments, including Repast and Mason.

An agent in Heatbugs (the “bug”) emits a certain quantity of heat per
timestep into the environment, which then diffuses by the standard heat equa-
tion. Each heatbug has a preferred temperature, so by tuning the model pa-
rameter one can see the formation of clusters of bugs that manage to heat
their environment to around the desired temperature.
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Fig. 1.3. Snapshot of the world display of the Heatbugs model, running under
Repast

1.2.4 Mousetrap

Mousetrap was again a demonstrator model for Swarm, to illustrate the use
of dynamic scheduling. It consists of a plane of loaded mousetraps. The initial
event consists of a ball dropped on the central mousetrap, which releases the
mousetrap sending two balls at random to other mousetraps, releasing them
in turn in a chain reaction. In fact, the mousetrap model was originally intro-
duced as popular means of conveying the idea of a nuclear chain reaction[31]
There is no concept of a timestep, actions happen when caused by previous
actions.
Mousetrap has been implemented in Swarm, Repast and MASON.
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1.3 Software Modelling Tools

1.3.1 Open Source versus Freeware

The English language has an unfortunate ambiguity with the word “free”,
which can mean free of restrictions or alternatively available for zero cost. This
ambiguity is not always present in other languages, eg French libre/gratuit or
German frei/kostenlos. The Free Software Foundation® defines free software
as having freedom from restrictions on how to use or distribute the software.
Think of “free” as in “free speech,” not as in “free beer”.[10] Free software
need not be free as in beer, as one may still have to pay distribution costs
(media, handling charges etc), but in practice the modern internet means
these charges are negligible.

One of the most important characteristics of free software is that of being
open source, namely that the source code for the software is publicly available
for study and improvement.

In scientific modelling, open source is crucial to allow independent vali-
dation of scientific experiments. Often, when computational experiments are
replicated by a second research group, differences in behaviour are observed
between the original reported results, and the reproduced experiment. It be-
comes important to understand whether the problem is due to implementation
bugs in either the original, or replicated code, or whether the published model
specification is inadequate[23].

If the source code of the computational experiment is openly published
along with scientific article describing the experiment, then it becomes pos-
sible for later researchers to tease apart any anomaly that might appear.
Unfortunately, it is not yet commonplace for researchers to publish the source
code of their experiments, however the artificial life community encourages the
practice through asking reviewers to check and comment on the availability
of experimental source code.

What about the software components used to build the computational ex-
periment? To help fix the magnitude of the problem, it is worth imagining
being a researcher thirty years from now attempting to replicate a contempo-
rary experiment (as McMullin found himself attempting to replicate Varela’s
work[23]). Assume that the source code used for the original experiment was
available. To be able to rerun the original experiment, you would need a com-
piler for the language the experiment was coded in, and also a copy of any
libraries used. Since you probably do not have access to the original hardware
(how many thirty year old functional computers are you aware of), and unless
you have a functional emulator, you will need the source code for any libraries
as well.

The language used in coding will probably no longer be used (Fortran
and C are exceptional in being languages maintaining backward compatibility
over this sort of timeframe), so you may also need an open source copy of the

3 http://www.fsf.org
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language compiler. At very least, with well documented language standards
(eg ANSI/ISO standard C, C++) and associated standard libraries, it may be
possible to manually translate an existing open source program into a modern
language with some sort of fidelity.

Agent based modelling systems fall into the “any libraries” category. Since
it is unlikely for any ABM system to be perfectly documented, nor for the
scientific report to list precisely which version of the tool’s specification is
used, nor for the actual ABM system to be bug-free, it is vitally important
that the ABM system’s source code is available for perusal.

As mentioned above, it is perhaps not so important for the implementation
language and standard library to be open-source, provided it is one of the well
documented standard languages. However, it is important that the language is
freely available (as in beer), to remove any barriers to independent verification
of computational models. The use of Java is a case in point. Java is developed
by Sun, with a well documented language and standard library, and a free
(as in beer) reference implementation available for most modern computing
platforms. With the GNU gcj project*, Java will become an open source option
in the future, providing the language does not evolve too fast for the gcj
development effort to keep up.

1.3.2 Programming Languages

Traditional scientific modelling has been implemented using a general pur-
pose high level language such as Fortran, C and more recently C++ and
Java. Standard libraries of numerical methods are employed where relevant,
but these tend to be oriented towards models expressible in terms of linear
algebraic operations: vectors, matrices and so on. Much of a scientific code
deals with reading model parameters, and reporting results. If the calculation
takes more than a day or so to complete, additional code needs to be added to
allow the calculation to be paused, resumed and migrated as computational
resource availability varies. Further code will need to be added to distribute
the calculation across multiple processors to enable computations to finish in
a reasonable time. The upshot is that a sizable fraction, perhaps as much as
50% of the lines of code of a scientific application, is not directly implementing
the scientific calculation, but performs these incidental tasks.

The amount of extra effort needed to obtain a functioning scientific ap-
plication has lead in many areas to “application frameworks”, where for a
limited range of scientific models, users can plug in problem specific methods.
One example of this is in the area of computational fluid dynamics, where the
leading packages Fluent and CFX allow users to supply subroutines coded in
C or Fortran to implement specific physical models not supplied in the core
functionality.

* http://gcc.gnu.org/java
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Agent based models have not only the usual demands for scientific models,
but also need interactive modes of exploration. Many phenomena of interest
may only occur in specific scenarios, so it is useful to be able to restart the
model from a known point, and to drill down to individual agents and their
interactions, to establish what agent behavior is essential for the phenomena
to occur. The process of designing an agent based model typically involves an
interactive “playing with the model” stage, in which the modeler develops a
feel for how the agents behave, and what might be the most significant pa-
rameters of interest, followed by a second stage of “parametric” exploration to
establish what range of model parameters the phenomenon of interest occurs.

The first question to ask of any agent based modelling platform is what
language is used to implement the agents. Since agents have behaviour, they
cannot be represented just by numbers, as might be the case in other scientific
computations. Some simulation systems allow a limited range of agent types to
be implemented without programming knowledge (eg StarLogo or RepastPy),
but for greatest generality, agents should be implemented in a general purpose
programming language, preferably object-oriented as this matches the agent
based paradigm.

The choice of ABM systems surveyed in this chapter is organised by this
agent implementation language. I have chosen systems that use a widely im-
plemented object oriented programming language, as this allows program-
mers familiar with that language to become productive in a short period of
time. Also the design of a new language is a nontrivial task — using exist-
ing languages ensures that bugs have known workarounds, and that efficient
implementations are available.

The most popular ABM systems are based on the Java language, an ob-
ject oriented language influenced by the C/C++ language family, but from
the outset designed to be a simpler language than C++, in both usability
and functionality. Java compilers are freely available for most platforms, and
the language and its system library publicly documented. Whilst open source
Java compilers are not as mature as the closed source options®, as mentioned
previously this is not such an issue for scientific computing. Nevertheless there
are issues with Java’s floating point model one should be aware of.[19]

Because Java is widespread, and is a simpler language to learn, it is of-
ten the language of choice for learners of object oriented programming. Its
main competitors are C#, which is still somewhat tied to the Windows .Net
environment (although Mono® is now available as an open source implemen-
tation of the .Net runtime and C# compiler), and C++, whose feature rich
capabilities typically take a couple of years to master.

Java, and its .Net cousins compile to a virtual machine. By providing a
uniform machine model for the compiler to target, it is easier to write portable

5 As this chapter was being prepared, Sun has open-sourced the core parts of its
Java development environment, so even this is no longer an issue
5 http://www.mono-project.com
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code. However, the virtual machine needs to be emulated by the physical com-
puter, and this introduces a performance penalty. The use of just in time com-
pilation technology substantially reduces this performance penalty, though not
completely. For full performance, which is just as important in ABMs as in
general scientific computing, a compiler that targets the native machine is
needed. For Java, there is an experimental Java front end for the GCC family
of compilers called gcj. It can not only compile Java source code to Java byte
code (replicating Sun’s Java compiler), but also compile the byte code directly
to native machine code. That said, in a direct comparison of the same simple
agent based model implemented in Java using Repast, and C++ using Ecoap,
both the Java and C++ versions executed at the same speed (Sect. 1.4).

For compiling to the native machine, the main choices are Objective C
(as used in Swarm) and C++ (as used in EC@ab). Objective C was chosen by
the Swarm project as being a very minimal object-orient extension to C that
would not impose too much of a learning curve on prospective users. Unfor-
tunately, the very simplicity of this language means that object management
is largely the responsibility of the programmer, and places a large burden on
the programmer to get the code functioning correctly. One other downside to
Objective C is that GCC is the only commonly available compiler, and GCC
tends not to produce as well optimised code as do commercially available
compilers (although on Intel x86 architectures, the reverse can often be true).

The other mainstream language is C++, which has consistently held the
3rd spot (behind Java and C) in the TIOBE Programming Language Com-
munity Index” over the last 5 years. Vendor optimised compiler optimisers
are available for obtaining performance, and an open source reference imple-
mentation exists (GCC). There are two main advantages of C++ over Java:
more opportunities for optimising performance and operator overloading. Op-
erator overloading allows the creation of mathematical types like vectors, or
complex numbers, and express mathematical operations on them using con-
ventional algebraic notation (+, * etc.) instead of functional notation (add(,),
mul(,) etc.). This is an important feature in scientific computing.

Ultimately, the choice of ABM platform should probably depend on the
programming language you are most familiar with. If you are familiar with
Java, then Repast or Mason would be a good choice. If C++ is your familiar
language, then EC@ab would make a good choice. If C was your language, then
you might consider Swarm. If programming is not your forte, then perhaps
NetLogo might make a good choice for dipping into the world of agent-based
modelling.

1.3.3 Reflection

As previously mentioned, a large part of a typical scientific code is involved
in reading in the model’s parameters, and in providing checkpoint-restart

7 http://www.tiobe.com/tiobe_index/
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functionality for long running codes. For a rapidly evolving model, as many
agent-based models are, each time the model accumulates another instance
variable, or deletes one, this ancillary code needs to be updated to keep track
of the changing model.

The notion of reflection is the ability to determine an object’s structure at
runtime, the names and types of all its instance variables, and lists of methods.
By using reflection, this ancillary code can automatically track model changes
without further burden on the programmer. Furthermore, the concept of a
probe, or a dynamic visualiser of agents making up the model system, needs
to make use of reflection to understand and represent the instance variables
and methods of the object.

Unfortunately, traditional compiled languages such as C and C++ throw
away this information at compile time, whereas other popular languages such
as Java and Objective C have inbuilt reflection capability. Reflection was the
other main reason for the choice of Objective C over C++ in the Swarm
system.

For C++, Ec@ab uses a C++ language processor called Classdesc[22], that
emits overloaded C++ function calls that walk the structure of the object.
This allows serialisation of objects to a binary representation for checkpointing
and other functionality, and exposure of object internals for probing.

1.3.4 User Interface and Scripting

All the agent-based modelling frameworks mentioned here have a GUI inter-
active mode with the ability to attach probes to objects, and to plot basic
statistics and display histograms of the system behaviour. Once interactive
development of the model is over, it is then usually desirable to turn off all
graphical elements and run the model from a batch script. Only Ec@ab has this
capability without recompilation, as all graphical elements are implemented as
distinct script commands from those that implement the model. Other models
require distinct BatchModel and ObserverModel implementations.

Ec@ab’s script interface (which uses the TCL programming language) has
the advantage that model parameters can be simply set from the script with-
out the programmer having to write a single line of I/O code. Ousterhout[27]
eloquently argues for the advantages of scripting interfaces to improve the
plasticity of software, particularly for the development phase. With scientific
codes, the development phase is often never finished. None of the other ABM
packages offer a script interface, however Repast does offer a simple param-
eter file syntax, that allows just the setting of constant value parameters.
Furthermore, RepastPy integrates the Python scripting language into Repast
to produce a simple to use rapid development environment.

The TCL scripting language used by Ec@ab also includes a complete plat-
form independent GUI programming environment. This technology is also
used by Swarm, but encapsulated to hide the TCL interface from the user.
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Java systems have their own GUI programming environment, in fact several
are possible: AWT, Swing and SWT.

1.3.5 Discrete Event Scheduling

Being the first package to provide explicit support for agent based modelling,
Swarm’s characteristics provides a benchmark for subsequent frameworks. The
most important feature of Swarm is its discrete event scheduler — this allows
for agents to register their method calls to occur at specific times during the
simulation. Frequently, but not always, these actions are registered to take
place periodically, defining the model’s timestep. An asynchronous simulation
would simply consist of scheduling one event, which in turn causes further
actions to happen.

1.3.6 Random number library

Most agent based simulations rely upon streams of random numbers. Unfor-
tunately real sequences have notoriously low generation rates, and in any case
are not reproducible, which is a problem if you want to study an effect that
only occasionally makes its appearance. Usually, algorithmically generated,
or pseudorandom number generators are used. However, any algorithmically
generated sequence of numbers is correlated by definition, and this may or
may not be a problem for the system being studied. Many evolving artificial
life systems are know to exploit bugs unintentionally left by the programmer
(see [37]), so it would not be surprising if evolving systems could exploit a
weak random generator. The choice of random number generator can also
have a significant effect over the result in Monte Carlo simulations[29]. It is
therefore desirable for an ABM framework to provide a well stocked library of
different random number implementations, and allow for different generators
to be swapped in easily.

1.3.7 Swarm

Swarm|[24] is very much the grand-daddy of agent based modelling frame-
works. It was initiated by Chris Langton as a reaction to the many and vari-
ous implementations of artificial life models, complete with “life-support sys-
tems” to handle I/O, initialisation and visualisation. The idea was to provide
a software framework into which a scientist could plug just the computational
representation of the model, rather than requiring the scientist to create all
the necessary extra parts needed to support the computation. Just as we no
longer expect scientists to grind lenses, or wire up their own custom built
particle detectors, we shouldn’t expect them to have to build the tools needed
to analyse their models.

When Swarm was originally designed, C and Fortran were the predom-
inant scientific programming languages. Neither of these languages provide
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explicit object oriented programming support, and Fortran in particular was
only widely available as Fortran 77 (as f2c and later g77 compilers) which
lacked many modern programming features (now rectified with the Fortran
90 programming language). The GNU C compiler (gec) supported two im-
portant object oriented extensions to C: Objective C and C++. Objective C
had the advantage of being relatively simple for programmers to learn the
object oriented syntax, and moreover had inbuilt support for reflection (see
Sect. 1.3.3) which C4++ does not (EC@ab uses an additional C4++ language
processor to implement the necessary reflection functionality). So the choice
of Objective C as an implementation language for Swarm is obvious.

At the time Swarm was developed, there was only one cross-platform GUI
technology in the form of TCL/Tk (see Sect. 1.3.4). So this was adopted for
the visualisation components of Swarm. BLT, an addon package for TCL/Tk
containing implementations of plotting widgets was a particularly useful com-
ponent. For similar reasons, TCL/Tk was adopted by Ecoap, whose develop-
ment also started around the same time. However, there was one key design
decision made by Swarm developers that differs from Ecpab. In Swarm, the
TCL components are wrapped by Objective C classes so users of Swarm do
not see the TCL interface. Swarm does not provide a scripting interface for
the user — users need to provide their own. By contrast, EC@ab makes a feature
of the TCL interface — users are expected to write, or adapt existing, TCL
scripts to reflect the requirements of their experiment.

To implement a Swarm model, one needs to implement three separate Ob-
jective C components called “swarms”. The ModelSwarm, which implements
the computational model under study, the ObserverSwarm, in which the ex-
perimenter must specify all the tools and visualisation widgets to be used for
interactive model exploration, and BatchSwarm, for doing extensive model
surveys such as data collection or parametric surveys.

A Java interface to Swarm was developed, which allowed the Swarm library
to be accessed from Java, and also Java implemented agents to be executed
by a callback mechanism. Performance tends to be lacking compared with
native Objective C model implementations, and more recent pure Java-based
packages such as Repast or Mason have made Java-Swarm somewhat obsolete.

Also, an experimental DCOM interface to Swarm was tried by Daniels[7],
which allowed Swarm to be used by any language supporting the DCOM
interface®, but this version of Swarm was never integrated into the production
version.

Swarm’s most distinctive feature is its discrete event scheduler (Sect.
1.3.5), a feature that has been copied by Repast and Mason. It also blazed
the way with dynamic object probes and plotting and histogramming widgets

8 DCOM is a Microsoft specific remote procedure call mechanism. Open source
equivalents to it exist, such as Mozilla’s XPCOM, but these have largely fallen
out of favour in recent years in favour of web services.
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derived from the BLT library. The other main feature is the Space library,
which implements a 2D grid in which agents can act.

A random number library is provided that provides the usual range of
uniform generators such as linear congruential and Mersenne twister, and a
number of nonuniform distributions such as the normal distribution, gamma
distribution and arbitrary user specified distributions.

Swarm also provides a containers library — lists, maps, sets and so on. This
is not needed in packages based on Java or C++4, as containers are part of the
latter languages’ standard library.

Swarm has extensive documentation, as well as numerous well developed
pedagogical exercises.

1.3.8 Repast

Repast[25] is a more recent Agent Based Modelling framework, heavily in-
spired by Swarm. It comes in three different flavours: RepastJ, which is a
pure Java based platform; Repast.Net, which is implemented in C# using Mi-
crosoft’s .Net environment, and RepastPy, a rapid application development
environment based on Python and Java. Both RepastJ and RepastPy run in a
Java Virtual Machine (JVM), whereas Repast.Net runs in a .Net virtual ma-
chine . It is unclear whether Repast.Net can be used in the Mono environment
— North et al. note the existence of Mono, but also say they expect the vast
majority of .Net code to only be run on the MSWindows operating system.

RepastPy is meant as a reduced learning curve environment situated some-
where between NetLogo and Repast in functionality. Python is an object ori-
ented scripting language that has received a lot interest in the last few years for
coding scientific applications. RepastPy uses the JPython interpreter, which
implements a Python interpreter on JVM with access to the underlying Java
class libraries loaded into the JVM. RepastPy, in fact, makes considerable
reuse of the RepastJ class library.

RepastJ is perhaps the most popular agent based modelling environment
in use today. This is in no small part because of the popularity of the Java
programming language, but also because it is a pure Java platform (so less
complex to use than Java Swarm), and also because it has a few years head
start on Mason, therefore has more comprehensive documentation, and also
a larger community of users.

Repast comes with the following functionality: discrete event scheduler; a
GUI controller which handles probing and interactively setting model vari-
ables, stepping and running the model; a parameter package for specifying
model parameters in batch mode and/or managing parametric studies; an
analysis package with plotting and histogramming, as well as some basic
statistical functionality; and domain specific packages to handle 2D spatial
grids, genetic algorithms, neural networks, support for Geographical Informa-
tion Systems databases and some support for network modelling (classes for
representing nodes and edges of a network).
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Repast is distributed with the Colt numerical library, which includes an
impressive array of random number generators .

The documentation consists a series of “how-to”s, relatively informal doc-
uments describing how to do one or two specific things. There are a number
of example models which are good as starting templates for a new user. It
is relatively simple to get the example models running in a GUI interactive
mode, but not so easy to find out how to run models in a batch setting. There
is a “-b” option that can be passed on the command line to disable the over-
head of the GUI simulation controller, however any visualisation built into
the model will continue to display unless the model has been coded with an
explicit parameter that disables graphical output. There is no explicit sup-
port for model checkpointing, but since Java natively supports serialisation,
a competent Java programmer should be able to add this functionality.

1.3.9 Mason

Like Repast, Mason is a 100% Java simulation platform that provides the
usual array discrete event engines, probes and plotting widgets[21]. Its claimed
strength lies in support from the outset for large scale modelling, with more
optimised data structures, support for checkpointing and running of multi-
ple batch runs. In my timing experiments (Sect. 1.4), Mason outperformed
Repast, which at least backs up that claim. It also has extensive support for
3D calculations, something that is a little weak in Repast.

However, documentation is a weakness with Mason. It is not immediately
obvious how one performs batch experiments, for example. Presumably one
has to make specific allowances for this when coding the model, just as in
Swarm and Repast. Mason is also a newer platform than Repast, hence it
hasn’t attracted as large a community of users as Repast.

1.3.10 Eceap

Ecpap originally started life as a special purpose framework for hosting a
single model written in C++, the Ecolab model[33]. Over the years it accreted
several other similar types of models until by version 4 it had the ability to
host an arbitrary C++ coded model[35]. The key feature needed for this was
the Classdesc preprocessor, which effectively adds reflection to C++[22]. This
allows the EC@ab framework to supply probing, scripting, checkpointing and
even remote visualisation of running simulations.

Whilst Ec@ab has been around for while, is reasonably mature software,
and reasonably well documented, it has only been used by a small handful
of groups. The example models provided with the source code are actually
research models, so are not necessarily ideal for learning the system. One of
these models is a continuous space agent based model, which illustrates a
number of important ABM techniques.
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The lack of pedagogical models is currently being addressed by implement-
ing the Stupid Model ? of Railsback et al. [30] in E¢@ab. The Stupid Model
has already been implemented in Swarm, Repast, Mason and NetLogo, so this
is an ideal way of comparing the different environments. The implementation
seemed to be about as easy as using Repast, and perhaps a little easier than
Swarm. However, it lacks a special purpose spatial library — what it does have
is something far more powerful (which also means more complex to use) called
Graphcode[36]. Graphcode represents a network of agents (which could be cells
of a spatial grid for instance), where the agents can be distributed across a
cluster of computers enabling parallel processing. This allows for scaling agent
based models to very large sizes. The jellyfish model provided in the examples
has been run with several million jellyfish agents on 4-8 processor clusters.

One important aspect of agent based modelling is the use of references.
When attaching a probe to an agent, the probe object needs to maintain a
reference to its agent. When setting up schedules, lists of references to agents
need to be maintained. C++ provides the notion of a static reference (refer-
ence initialised at construction), and pointers, but the former is too inflexible,
and the latter too easily invalidated. EC@ab provides an experimental dynamic
reference counted reference class that ensures the target object is destroyed
once all references to it are. This problem is a nonissue in garbage collected
languages like Java. Whilst garbage collection receives its share of opprobrium,
for scientific modelling its performance impact is restricted to the interactive
uses, when model performance is typically less important.

Unlike Swarm, Repast and Mason, E€@ab provides scripting interface. Your
C++ model object is linked to a TCL interpreter[26], with the instance vari-
ables of your model available as TCL commands. Setting model parameters
are simple TCL commands. Complicated initialisations can be computed —
eg setting the random number seed to a function of the processor ID for in-
stance to ensure independent random streams. The difference between batch
processing and interactive processing is the presence of the ‘GUI’ command,
and the presence graphical visualiser commands such as plot or histogram.
The net effect is a sort of halfway house between a rapid application develop-
ment environment, and a fully compiled application, allowing a great deal of
flexibility during the experimentation phase.

Ec@ab does assume competency with C++, but even though the user needs
to program in TCL, not much knowledge of TCL is needed to do most experi-
mental tasks. Sample scripts can be readily adapted by novice TCL program-
mers. Advanced TCL knowledge is really only needed for novel visualisation
tools using the Tk canvas widget for instance.

Whilst E€@ab comes with a very elementary random number library, it
is interfaced to use the far more comprehensive UNURANJ16] or the GNU
Scientific Library[13] random number libraries. With UNURAN in particular,

9 http://www.swarm.org/wiki/Software_templates
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the random generators can be configured by a scripting interface, and this
scripting interface is exported to Ecgabs TCL interface.

1.3.11 The Logos, StarLogo and NetLogo

StarLogo!9[6] and NetLogo'! use the Logo language, which was designed as an
elementary teaching language for primary school students. The frameworks are
simple and easy to use, so are recommended for users with little or no program-
ming experience. However, the environments are often considered too simple
for realistic research models. That said, Railsback et al. noted that NetLogo
was sufficiently rich for them to be able to implement their pedagogical Stupid
Model and that these environments should not be discounted completely for
scientific research applications[30]. Of the three logo environments, NetLogo
is the richest.

Both StarLogo and NetLogo are available for the Java virtual machine,
and StarLogo has recently been released as a Java open source code ver-
sion called OpenStarLogo. NetLogo is not open source. In reviewing the logos
for this article, I was unable to build OpenStarLogo (on Linux), but both of
compiled logos (Star- & Net-) had functional shell scripts for starting the sim-
ulator from the unix command line. Nevertheless, Logo is an interpreted code,
with the interpreter running inside Java’s virtual machine, so the modelling
environments will be constrained in terms of performance.

1.3.12 Cormas

Cormas[5] is an agent based modelling platform written in Smalltalk that is
mature, and has been used to implement a reasonable number of different
models. The Smalltalk code comprising Cormas is available through an open
source license, requiring registration with the Cormas development team. A
variety of open source and freeware Smalltalk compilers are available, which
typically compile to a bytecode interpreted representation. The Cormas web-
site recommends the use of the Visual Works Smalltalk compiler from Cincom,
which is available for MSWindows, MacOSX and Linux. It is unclear whether
Cormas is ANSI Smalltalk standards compliant, or requires specific features
of the Visual Works compiler.

To get started with Cormas, requires downloading a hefty amount of soft-
ware — the Visualworks environment ISO image is around 600MB. However,
once downloaded, the installation of Visualworks, and then Cormas on top of
that on my Linux workstation was straightforward.

10 http:/ /education.mit.edu/starlogo/
' http://ccl.northwestern.edu/netlogo
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1.4 Performance Comparisons

Rarely have different agent based modelling platforms been compared for
performance, or ease of use, since reimplementing an existing model is a lot of
effort, and people rarely have the cross-platform skills needed to do the task.

However, Railsback et al.[30] recently performed a cross platform study of
Swarm, Java Swarm, Repast, Mason and NetLogo using a simple pedagogic
model (“Stupid Model”) that is in some way representative of typical agent
based models. They structured their model in the form of a sequence of incre-
mental steps that starts with implementing a number of agents moving around
a featureless landscape at random up to a model with predator-prey interac-
tions, and a renewable resource (“grass”) that was replenished at different
rates at different locations.

The present author has added to this study by implementing Stupid Model
in Ec@ab. The aim of this exercise was to show how EC€@ab could be used for
implementing the sorts of models one would use Repast and other similar ABM
platforms, to gauge how difficult the task was from a programmer perspective
and to compare simulation performance.

In order to be as comparable with Railsback et al.’s exercise as possible,
the current public EC@ab release (4.D21) was used for implementing the mod-
els from the Stupid Model specification file. For ease of use, my experience was
similar to that reported by Railsback et al., in getting the first model working
within about 4 hours, and each model after that being a much smaller incre-
ment. The first model took as long as it did as the best way to represent a
rectilinear space grid within Graphcode had not been determined. Aside from
a specialised space library, no other needed feature was obviously missing.
Versions 10 and 11 were performed in batch mode (no graphical output, no
GUI control, Mason excepted), version 16 in GUI mode with a plot and his-
togram. EC@ab’s field version uses raster rather than canvas for display, and
omits the expensive histogram widget.

The stopping criteria as specified by Railsback et al. is when the maximum
bug size reaches 100. Since bug growth depends on the availability of food,
which itself is a function of a random number generator call, and also of the
grazing history, this stopping criterion is indeterministic, since the different
frameworks will perform object updates in different orderings, and hence draw
different sequences of random numbers. For the purposes of inter-framework
performance comparisons, the stopping criterion was changed to be a fixed
number of bug updates (500).

In version 10 of Stupid Model, bugs will randomly select a cell within their
neighbourhood, and moving to it if the cell is empty, otherwise repeating the
selection process. In version 11, all cells in the neighbourhood are iterated
over, and the bug moves to the empty cell with the most food.

From version 12, bugs can reproduce and die according to random dy-
namics, so the amount of work per update step will depend on the number
of living bugs. Even though these higher version models are more computa-
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tionally intensive, run times cannot be compared between different platforms
due to differences in the order that random numbers are generated. Hence the
Stupid 16 measurements reported in table 1.1 should be taken with a certain
amount of salt. Nevertheless, all models executed for 1000 steps without ter-
minating early, and that the number of Stupid Bugs was roughly the same for
each platform (approximately 8-900 after the initial population explosion).

Railsback et al. made no attempt to optimise model speed, so for com-
parison nor was the £€@ap model optimised. E€@ab is the only environment
that explicitly supports a batch processing mode, and Railsback et al did not
provide batch versions of their Stupid Model. Railsback et al’s model code
was modified to disable graphical updates, and CPU times used for compari-
son which eliminates any delay effect from having to launch the run manually
with a mouse click. In comparing Ec@ab with Repast, Mason and Objective-C
Swarm, EC@ab was the fastest, with Mason and Repast not too much slower,
but Swarm was substantially slower. Furthermore, in GUI mode, Ecoab was
very slow, particularly compared with the Java platforms.

All performance benchmarks were run on a 2GHz Intel Pentium M pro-
cessor with 1GB memory running Slackware Linux 10.0. The Java version
used for Repast and Mason was SDK 1.4.2 standard edition. The compiler
used for Swarm and E€@ab was GCC 3.4.3. T also did a comparison EC@ab run
using the Intel C++ compiler 9.0, but this was more than 50% slower than
the GCC compiled code. This somewhat surprising result indicates that icc’s
strength lies in vectorising loops that access data contiguously to exploit the
inbuilt SSE instructions, but that for more general purpose ABM code, GCC
performs better (at least on Linux!).

The sourcecode for EC@ab Stupid Model is available from the Ec@ap
website.[8]

Table 1.1. Execution CPU times (in seconds) for several Stupid Model versions for
different platforms

Versi0n|Repast Mason Obj-C Swarm Ec@ap

10 3.5 3.4 71 3.9
11 327 213 165 14.9
16 44 40.5 402 1014
field 67

My observations that the Java platforms performed almost as well as
Ecpab’s C++-based one is broadly in line with other observations that
Java implementations tend to be within a factor of 2 of natively compiled
applications[4, 18]. The fact that Java code is obtaining comparable perfor-
mance with native compiled object code indicates that just in time compilation
technology has reached a comparable level of maturity compared with native
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code compilers. The stereotype of virtual machines having poor performance
compared with native object code can be laid to rest, at least for the typi-
cally integer bound computations often seen in agent based models. Models
requiring linear algebra operations will no doubt continue to perform better
with C++ implemented code. Conversely, the poor performance of the GUI
mode Ec@ap is due to the graphical operations being implemented with the
TCL library, which uses byte code interpretation. There will probably be some
substantial wins in integrating E€@ab’s C++ technology with the Repast or
Mason execution engines.

1.5 Conclusion

Agent based modelling frameworks have matured a lot since Swarm was first
released in 1995. Frameworks supply much of the necessary model independent
functionality needed to get a scientific code running, and assist in exploring
and debugging the model. Using a framework frees the scientific programmer
to spend more time implementing the actual model.

The most important factor discriminating the frameworks reviewed here is
the agent implementation language. Usually programmers have more experi-
ence in one language more than another, narrowing the choice to environments
supporting the language with which they’re familiar. If your language is C++,
then Ec@ab is a good choice, if Java then Repast (although Mason has some
interesting additional features), if C then Objective C swarm, and if you're a
novice programmer, one of the Logos.

The Java frameworks (Repast, Mason and Java Swarm) are by far the
most popular, owing to the popularity of the Java language. Whilst earlier
versions of the Java virtual machine exhibited performance problems, the
most recent versions implementing just in time compilation can get close to
the performance of a well optimised C++ application.

There are very few comparative studies comparing different ABM plat-
forms, and it can be difficult to validly compare different platforms. Pro-
grammer familiarity with one programming environment will bias ease of use
comparisons, and indeterminancy (due to different pseudo random number
generators employed) will prohibit valid performance metrics.

The Stupid Model exercise, however, at least indicates the suitability of
all the surveyed ABM environments for typical ABM requirements.

Most of the platforms have a range of standard and pedagogical agent
based models implemented, some of which are described in earlier sections.
Ecgab is the odd one out, in only supplying certain research models. There
is a need for EC@ab versions of the standard models to assist newcomers in
building their own models, and to assist in cross platform comparisons.
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A ABM Platforms

Swarm

URL:

Model Language:

Visualisations:

Scripting:

Features:
Repast

URL:

Model Language:

Visualisations:
Scripting:
Features:

Cormas
URL:

Model Language:

Visualisations:
Scripting:
Features:

Mason
URL:

Model Language:

Visualisations:
Scripting;:
Features:

EcoLab
URL:

Model Language:

Visualisations:

Scripting;:

Features:
NetLogo

URL:

Model Language:

Visualisations:

Scripting;:

Features:
StarLogo

URL:

Model Language:

Visualisations:
Scripting;:
Features:

http://www.swarm.org

Objective C or Java

Plotting, Histogram, Raster

None

2D Space, Event scheduler, Probes

http://repast.sourceforge.net

Java, Python and .Net (C#, etc.)

Plotting, Histogram, Raster

Parameter files

2D Space, Event scheduler, Probes, GIS support

http://cormas.cirad.fr

Smalltalk

Raster, Vector graphics, Plot, Message

None

2D Space, Event scheduler, Probes, GIS support

http://cs.gmu.edu/~eclab/projects/mason

Java

Plotting, Histogram, Raster

java.util.Properties (parameter files)

2D & 3D continuous, discrete or network Space, Event scheduler, Probes, Checkpointin

http://ecolab.sourceforge.net
C++
Plotting, Histogram, Canvas
TCL

Network Space (Graphcode), Probes, Checkpointing, Parallel programming

http://ccl.northwestern.edu/netlogo
Logo

Plotting, Histogram, Raster

None

2D & 3D Space, Probes

http://education.mit.edu/starlogo
Logo

Plotting, Raster

None

Space, Probes
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B Discussion Fora

The fora are not platform specific. For platform specific fora, such as asking
for programming help or discussing bugs or software improvements go to the
platform specific website.

swarm-modelling:
http://www.swarm.org/wiki/Swarm: Mailing lists

Grey Thumb:
http://www.greythumb.org/wiki/WikiHome

planet agents:
http://planetagents.org

Agent-based Computational Economics:
http://www.econ.iastate.edu/tesfatsi/ace.htm

SwarmFest:
http://www.swarm.org/wiki/Swarm: SwarmFest Annual ABM conference

complexity-science:
http://necsi.net:8100/Lists/complex-science/List.html General complex sys-
tems discussions, occasionally ABM related

FRIAM
http://www.friam.org/ General complex systems discussions, occasionally
ABM related

http://www.swarm.org/wiki/Software templates This page contains links to
the StupidModel specifications, and implementations in various frame-
works.
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artificial life, 1, 3 Graphcode, 18, 20
Artificial Stock Market, 5

Avida, 2 Heatbugs, 7

individual based modelling, 2, 3

batch, 13, 15-18, 20, 21 Intel C++, 21

BLT, 15, 16
boolean networks, 3 Java, 10-18, 21

just in time compiler, 12
C, 2,10, 12-14
C++, 2, 10-13, 15, 17, 18 Logo, 19
C#, 11, 16 ‘
cellular automata, 3 market modelling, 3
CFX, 10 Mason, 5, 7, 8, 12, 15-18, 20
checkpointing, 12, 17 molecular dynamics, 2
Classdesc, 13, 17 Mono, 11, 16
containers, 16 Monte Carlo, 3, 14
Cormas, 5, 19 Mousetrap, 8

d behaviour, 3
crowe DERavIont, NetLogo, 5, 12, 16, 18-20

DCOM, 15 neural networks, 16

digital organisms, 2 Objective C, 12, 13, 15
discrete event scheduler, 14-16 open source, 2, 9, 11, 19

Echo, 2 probes, 13, 16, 17
Ecgab, 12, 13, 15, 17, 20 Python, 13, 16
emergence, 1
random number generation, 14, 16, 17,
Fluent, 10 19
Fortran, 10, 14 reflection, 13, 15
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Repast, 5, 7, 8, 12, 13, 15-18, 20 Swarm, 2, 3, 5, 7, 8, 12-14, 16-18, 20
Santa Fe Artificial Stock Market, 5 TCL, 13, 15, 18

scripting, 13, 17, 18 Tierra, 2

Smalltalk, 19 traffic modeling, 3

space library, 16, 18, 20

StarLogo, 19 UNURAN, 18

Stupid Model, 18, 20
Sugarscape, 3 virtual machine, 11, 16, 19
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